
The key steps of Machine Learning model development:
Example of a Machine Learning model using Contact

Center AI (CCAI)

Business goal and machine learning solution

The business goal of this demo is to identify potholes on the road and record their
geographical location on the map.

The machine learning solution is to train a vision model (object detection/image
classification) to automatically label potholes in each (or every a few) video frames.

Combined with GPS metadata embedded in the video footage, each pothole identified will
get its geographical location and be visualised on the map.

Data Exploration

Exploratory Data Analysis was carried out in Vertex AI Workbench and descriptive
statistics of pothole bounding boxes were generated with customised code and
visualisation (python library used: seaborn, matplotlib).

Decision summary:

We chose to train both Image Classification and Object Detection models and select by
the performance on the independent testset because of the class imbalance issue we
discovered from our dataset. And we also implemented an image masking strategy for
pothole label distribution correction based on our analysis. Details are explained in the
following sections.

Data overview

The dataset we are using consists of 7 videos of road surveys on city roads with a small
number of potholes. Images are sampled every 5 frames from the videos. Camera angle is
consistent across the dataset. Example images as shown below (Fig.1):

© Ancoris Commercial in Confidence Page 1 of 17

Python

Fig.1 Image with potholes (left) vs image without potholes (right)

Image size is 1920 * 1080 and is consistent across the dataset. The shorter side of the
image is only slightly over the resizing threshold (1024) of AutoML image dataset, so no
heavy data compression issue is expected. (Reference link).

We select one video as the independent testset, and use the rest as training data.

Pothole occurrence rate

Analysis showed that data is highly imbalanced in terms of pothole-positive video frames
vs negative: only 4% of the video frames contain potholes.

video-image folder list
file_root = 'gcs/footage_2023_clean'
file_path_list = glob.glob(os.path.join(file_root, '*'))

batch processing: exported dataset -ground truth labels
image_df_list = []
bbox_df_list = []
positive_rate_list = []
num_img_total = 0
num_positive_total = 0

for file_path in file_path_list:
export_location = glob.glob(os.path.join(file_path, 'export-*'))

© Ancoris Commercial in Confidence Page 2 of 17

https://cloud.google.com/vertex-ai/docs/image-data/object-detection/prepare-data

Python

if export_location:
label_jsonl = glob.glob(os.path.join(export_location[0],'*','*','data-*.jsonl'))[0]
image_df, bbox_df = process_df(label_jsonl, file_path)
positive_rate = len(pd.unique(bbox_df['filename']))/len(image_df)

image_df_list.append(image_df)
bbox_df_list.append(bbox_df)
positive_rate_list.append(positive_rate)

num_img_total = num_img_total + len(image_df)
num_positive_total = num_positive_total + len(pd.unique(bbox_df['filename']))

average positive rate
print('Total number of images: ' + str(num_img_total))
print('Number of images containing potholes: ' + str(num_positive_total))
print('Average pothole-positive rates: ', str(np.mean(np.array(positive_rate_list))))

Output
Total number of images: 5232
Number of images containing potholes: 233
Average pothole-positive rates: 0.040

Although re-sampling methods can help with class imbalance problems, a simple Image
Classification model is still very unlikely to perform well because pothole-positive and
negative images look almost identical from the camera perspective (Fig.1). Details can be
found in the model selection section. On the other hand, 233 images containing potholes
is enough for training an AutoML Object Detection model. Pothole detection prediction is
easy to convert to image classification prediction as needed. What's more, a pothole
detection model provides further opportunities to extract pothole width, depth, severity,
etc. information, which are of further business interests. Therefore, we choose to train
both Image Classification and Object Detection models and select by the performance on
the independent testset.

Pothole label distribution

We describe the distribution of Pothole bounding boxes using the following measures:

● Area (bounding box width * height)
● Aspect Ratio (bounding box width / height)
● Location (normalised bounding box centre coordinates)

© Ancoris Commercial in Confidence Page 3 of 17

Python

Fig.2 Pothole label distribution

Bounding box Aspect Ratio distribution (Fig.2, middle) is normal while bounding box Area
distribution is skewed to the smaller side (Fig.2, left). Smaller objects are generally harder
for model training and indicate higher uncertainty in human labelling as well. Moreover, the
Location plot (Fig.2, right) indicates that many smaller bounding boxes are further down
the road, which should have bigger closer-up views in later video frames. Therefore, we
decided to include an image masking strategy for Area distribution correction (details see
Feature engineering).

Feature engineering

Feature engineering for vision problems

As Convolutional Neural Net (CNN) is an effective feature extractor itself, no specific
features need to be prepared like for traditional computer vision models. However, tailored
image and label preprocessing for our specific problem is crucial for pa�ern correction
and helps to reduce context-specific “noise”. In this demo, we developed an image
masking strategy according to our dataset.

Road-focus image masking

An image mask as shown below (Fig.3, left) is designed based on the pothole bounding
box location distribution (Fig.3, right) and is applied to both training and testing images.
This mask helps to block invalid locations for potholes to appear that are otherwise very
prone to false positive predictions (Fig.4). Moreover, the mask also blocks locations
further down the road that provide smaller-size bounding boxes with higher uncertainty.
Any faraway potholes should appear in the unmasked region in a few video frames later.
Masking region is customizable for experiment purposes (see code below).

mask = make_mask(l_msk_rate=0.7, t_msk_rate=0.1, r_msk_rate=0.4)

© Ancoris Commercial in Confidence Page 4 of 17

Fig.3 Image Masking Strategy

© Ancoris Commercial in Confidence Page 5 of 17

Python

Fig. 4 False positive predictions without masking

Data distribution after masking

Given this very small dataset we have, we adjusted the image mask to keep at least 100
potholes for training. 2 videos with very few/uncertain potholes were excluded from the
dataset. As a result, our dataset was reduced to 4578 images with 94 pothole-positive
images, occurrence rate 2%.

Small-size pothole labels were reduced after masking (Fig.5).

Output
Total number of images: 4578
Number of images containing potholes: 94
Average pothole-positive rates: 0.021

Fig.5 Pothole label distribution after masking

© Ancoris Commercial in Confidence Page 6 of 17

Preprocessing and the data pipeline

The pipeline consists of 4 parts (fig.6):

First, road survey videos are captured by a GoPro device which records GPS information at
the same time. Next, videos are dropped into the GSC bucket for raw data, which triggers
the data preprocessing.

During data preprocessing, videos are first sampled every 5 frames (adjustable) into image
series and masked (masking ROI adjustable) to only retain the road surface region. Then
each image is sent through a pre-trained Deep Neural Network (DNN) model for Personal
Identifying Information (PII) redaction. Specifically, car number plates and pedestrians are
detected and blurred. The resulting images are saved in the GCS bucket for clean data.

Finished preprocessing will trigger a batch prediction run on our trained pothole detection
model in Vertex AI and the results will be wri�en in a BigQuery table for the dashboard to
pick up.

Finally, the pothole prediction results along with their GPS information will be visualised in
Looker Studio for the end user for use cases such as pothole repair planning (fig.7).

Fig.6 Data pipeline

© Ancoris Commercial in Confidence Page 7 of 17

Python

Fig.7 Looker Studio dashboard of pothole detected sites

Code snippet for preprocessing:

def main(event, context):
file_path = event['a�ributes']['objectId']
if event['a�ributes']['eventType'] == 'OBJECT_FINALIZE':
if file_path.lower().endswith('.mp4') and file_path.split('/')[0] == 'Raw_videos':

storage_client = storage.Client()
bigquery_client = bigquery.Client()

bucket_id = event['a�ributes']['bucketId']
protopath,bucket, proto_name = download_blob(storage_client,

bucket_id,
"Config_files/MobileNetSSD_deploy.prototxt")

© Ancoris Commercial in Confidence Page 8 of 17

modelpath,bucket, model_name = download_blob(storage_client,
bucket_id,

"Config_files/MobileNetSSD_deploy.caffemodel")

detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)

CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bo�le", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "po�edplant", "sheep",
"sofa", "train", "tvmonitor"]

file_location, bucket, video_name = download_blob(storage_client,
bucket_id,

event['a�ributes']['objectId'])

blurred_bucket = storage_client.get_bucket(bucket_id)
blurred_bucket_id = "gcs_rapids_clean"
blurred_bucket = storage_client.get_bucket(blurred_bucket_id)

Blurring
blur_pii(file_location, video_name, detector,CLASSES,storage_client,bigquery_client,

blurred_bucket)
else:
print('Object: {} is not a valid trigger'.format(event['a�ributes']['objectId']))

else:
print('Invalid event type: {}'.format(event['a�ributes']['eventType']))

Blurring pii
def blur_pii(file_location, video_name,detector,CLASSES,storage_client,bigquery_client,
blurred_bucket):

end of snippet

Machine learning model design(s) and selection

Partners must describe either of the following:

Which AutoML product was chosen for demo #3

Evidence must describe (in the whitepaper) selection criteria implemented, as well as the
specific machine learning model algorithms that were selected for training or evaluation
purposes (as appropriate). Code snippets detailing the incorporation of the pre-trained
machine learning APIs or the AutoML product into the machine learning model solution for
demo #3 must be enumerated.

Model selection criteria

© Ancoris Commercial in Confidence Page 9 of 17

Python

We choose to experiment with both the AutoML Image Classification and Object Detection
models, and select the one be�er suited for our problem. Selection criteria is based on the
performance on the independent testset, specifically, the Precision, Recall and F1 score
for identifying pothole-positive images. F1 score is used as the main selection matrix.

For the Object Detection model, we convert the bounding box level prediction into image
level prediction by thresholding bounding box confidence score. If the highest bounding
box confidence score in one image passes the threshold, that image is predicted as
pothole-positive (see code below).

Thresholding bounding box
pred_positive = []
for i, row in df_pred_all.iterrows():
if row['prediction.confidences'][0] > threshold:
filename = os.path.split(row['instance.content'])[-1]
filename = filename[:10]+'.jpg'
pred_positive.append(filename)

Calculate metrics
TP = []
FP = []
FN = []
for img in pred_positive:
if img in GTP:
TP.append(img)

else:
FP.append(img)

for img in GTP:
if img not in pred_positive:
FN.append(img)

precision = len(TP)/len(pred_positive)
recall = len(TP)/len(GTP)
f1 = 2*precision*recall/(precision+recall)

Object Detection model out-performs Image Classification model

The independent testset information is summarised in the table below:

Video name Video length Images sampled Pothole-positive images

D6908F35-8B03-417F-AE0E-81EE1263C4CD 0:39 467 12

Precision, recall, and f1 score of the Image Classification model as well as the Object
Detection model are listed in the table below:

© Ancoris Commercial in Confidence Page 10 of 17

Machine learning model algorithms Precision Recall F1-score

Object Detection 0.58 0.58 0.58

Image Classification 0.06 1.0 0.12

The Image Classification model failed for two reasons. First, although during training the
pothole-negative class was down-sampled to the same number of images as the
pothole-positive class, the independent testset was still highly imbalanced as a
representative example of the production data. Therefore, the model was heavily biased
to the false-positive side, resulting in more than 400 images with prediction confidence
above 0.9. In contrast, the Object Detection model achieved a reasonable F1 score (0.58),
though false positive was also the issue to be improved. Detailed evaluation of the Object
Detection model see section.

Machine learning model training and development

Data sampling

The independent testset is selected to best represent the production data distribution.
The rest of the data is used for training. During training, each image is treated as an
independent sample (ie., the same pothole in adjacent video frames can be treated as
potholes from different viewpoints). Thus, the sampling method during training was set to
default (random).

AutoML training

Training was triggered from UI as well as via API for experiment convenience (code listed
below). Training result see fig.8.

Fig.8 Model details

© Ancoris Commercial in Confidence Page 11 of 17

Python
def create_training_pipeline_image_object_detection_sample(
display_name,
dataset_id,
model_display_name,
project = 'rapids-dev',
location = 'europe-west4',
api_endpoint = 'europe-west4-aiplatform.googleapis.com',

):
The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
Initialize client that will be used to create and send requests.
This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
training_task_inputs = trainingjob.definition.AutoMlImageObjectDetectionInputs(
model_type="CLOUD_HIGH_ACCURACY_1",
budget_milli_node_hours=20000,
disable_early_stopping=False,

).to_value()

training_pipeline = {
"display_name": display_name,
"training_task_definition":

"gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_object_detection_1.0.0.y
aml",

"training_task_inputs": training_task_inputs,
"input_data_config": {"dataset_id": dataset_id},
"model_to_upload": {"display_name": model_display_name},

}
parent = f"projects/{project}/locations/{location}"
response = client.create_training_pipeline(
parent=parent, training_pipeline=training_pipeline

)
print("response:", response)

Run training
display_name = 'training_0518'
dataset_id = '105678460592062464'
model_display_name = 'ds_ex_B43'
create_training_pipeline_image_object_detection_sample(
display_name,
dataset_id,
model_display_name

)

Evaluation metric

The model evaluation metric is the same with the selection criteria described above. From
the business goal perspective, the question for the current ML solution to address is to
identify potholes in video clips and report their GPS locations. GPS metadata was
captured and stored per video frame, thus the evaluation metrics are calculated at
image-level. Although the Object Detection model outputs prediction at individual pothole
level, it is too fine-grained for the business goal. Moreover, due to the shape variety of
potholes and viewpoint shifting, traditional IoU (intersection over union) metric could

© Ancoris Commercial in Confidence Page 12 of 17

easily reject a prediction that is actually correct in the context (Fig.9). Thus, image-level
evaluation is considered a be�er option.

Fig.9 Image-level evaluation.
(Single large bounding box: model prediction; 2 small bounding box: human labels)

Machine learning model evaluation

Partners must describe how the machine learning model, whether implemented using
pre-trained machine learning APIs or via AutoML, performs on an independent test
dataset.

Evidence must include records/data (in the whitepaper) of how the machine learning
model developed and selected to address the business question performed on an
independent test dataset that reflects the distribution of data that the machine learning
model is expected to encounter in a production environment. In addition, code snippets
on model testing need to be enumerated.

Independent testset reflecting production environment

As stated in the data section, all our videos are taken from the actual production
environment. We selected a video best representing the overall data distribution, and
used the rest as training data so that our testset is also matching the training data
(Fig.10).

© Ancoris Commercial in Confidence Page 13 of 17

Fig.10 Pothole label distribution: Testset vs Training data

Evaluation on testset

The model achieved 0.58 F1 score on the independent testset, with precision and recall
both at 0.58 as well. Video information and metrics are summarised in the tables below.
Testing code is listed below.

Given the small size of the training data we have (79 images with 110 pothole labels), the
model performed reasonably well.

The major issue with the model is false positive predictions. Currently the model is easy to
pick up objects with kind of similar pa�erns with a pothole as positive (e.g. darker stain,
patch of weed, tree shadow, cat’s-eye, manhole-cover, etc., see fig.11). These could
potentially be improved by adding more training data, especially including negative
samples as well. Current false negative predictions (fig.12) are mostly caused by the high
confidence threshold set to eliminate as many false positives as possible. Thus reducing
false positives should be the future direction. True positives see fig.13.

Video name Video length Images sampled Pothole-positive images

D6908F35-8B03-417F-AE0E-81EE1263C4CD 0:39 467 12

© Ancoris Commercial in Confidence Page 14 of 17

Python

Python

Machine learning model algorithms Precision Recall F1-score

Object Detection 0.58 0.58 0.58

threshold = 0.975

print('Number of images tested: ' + str(len(df_pred_all)))
print('Ground truth: ' + str(len(GTP)))

thresholding bbox: collect img
pred_positive = []
for i, row in df_pred_all.iterrows():
if row['prediction.confidences'][0] > threshold:
filename = os.path.split(row['instance.content'])[-1]
filename = filename[:10]+'.jpg'
pred_positive.append(filename)

Calculate metrics
TP = []
FP = []
FN = []
for img in pred_positive:
if img in GTP:
TP.append(img)

else:
FP.append(img)

for img in GTP:
if img not in pred_positive:
FN.append(img)

precision = len(TP)/len(pred_positive)
recall = len(TP)/len(GTP)
f1 = 2*precision*recall/(precision+recall)

print('Detection threshold: ' + str(threshold) + ': ' + str(len(pred_positive)) + ' pothole-positive
images.')
print('Prediction Precision: %.2f' % precision)
print('Prediction Recall: %.2f' % recall)
print('F1 score: %.2f' % f1)
print('')

Output

Number of images tested: 467
Ground truth: 12
Detection threshold: 0.975: 12 pothole-positive images.
Prediction Precision: 0.58
Prediction Recall: 0.58

© Ancoris Commercial in Confidence Page 15 of 17

F1 score: 0.58

Fig.11 False positive predictions

Fig.12 False negative predictions

© Ancoris Commercial in Confidence Page 16 of 17

Fig.13 True positive predictions

© Ancoris Commercial in Confidence Page 17 of 17

